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T
he first microscopic model of electric conduction in metals was proposed by
Paul K. Drude in 1900 and developed by Hendrik A. Lorentz about 1909.
This model successfully predicts that the current is proportional to the po-
tential drop (Ohm’s law) and relates the resistivity of conductors to the
mean speed and the mean free path* of the free electrons within the con-
ductor. However, when mean speed and mean free path are interpreted clas-

sically, there is a disagreement between the calculated values and the measured
values of the resistivity, and a similar disagreement between the predicted tem-
perature dependence and the observed temperature dependence that resistivity
values have. Thus, the classical theory fails to adequately describe the resistivity of
metals. Furthermore, the classical theory says nothing about the most striking
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Do you know how many atoms of

arsenic it takes to increase the

charge-carrier density by a factor of

5 million? (See Example 38-7.)
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* The mean free path is the average distance traveled between collisions. 

*

IT IS WELL KNOWN THAT ARSENIC IS A
POISON. IT IS LESS WELL KNOWN
THAT SILICON CRYSTALS THAT HAVE
SMALL CONCENTRATIONS OF ARSENIC
ATOMS HAVE A MUCH LOWER
RESISTIVITY THAN DO CRYSTALS
THAT ARE 100 PERCENT SILICON.
(The Natural History Museum/Alamy.)
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F I G U R E  3 8 - 1 Face-centered-cubic
structure of the crystal.NaCl

property of solids, namely, that some substances are conductors, others are insula-
tors, and still others are semiconductors, which are substances whose resistivity
falls between that of conductors and insulators.

When mean speed and mean free path are interpreted using quantum theory,
both the magnitude and the temperature dependence of the resistivity are correctly
predicted. In addition, quantum theory allows us to determine if a substance will
be a conductor, an insulator, or a semiconductor.

In this chapter, we use our understanding of quantum mechanics to discuss
the structure of solids and solid-state semiconducting devices. Much of our
discussion will be qualitative because, as in atomic physics, the quantum-
mechanical calculations are mathematically sophisticated.

38-1 THE STRUCTURE OF SOLIDS

The three phases of matter we observe everyday—gas, liquid, and solid—result
from the relative strengths of the attractive forces between atoms and molecules and
the thermal energies of the particles. Molecules and atoms in the gas phase have rel-
atively large thermal kinetic energies, and such particles have little influence on one
another except during their frequent but brief collisions. (By using the term thermal
kinetic energies, we mean the kinetic energies of the molecules and atoms in the
center-of-mass reference frame of the gas.) At sufficiently low temperatures, van der
Waals forces will cause practically every substance to condense into a liquid
and then into a solid. In liquids, the molecules or atoms are close enough—and
their thermal kinetic energies are low enough—that they can develop a temporary
short-range order. As their thermal kinetic energies are further reduced, the mole-
cules or atoms form solids, which are characterized by a lasting order.

If a liquid is cooled slowly so that the kinetic energy of its molecules is reduced
slowly, the molecules (or atoms or ions) may arrange themselves in a regular crys-
talline array, producing the maximum number of bonds and leading to a minimum
potential energy. However, if the liquid is cooled rapidly so that its internal energy
is removed before the molecules have a chance to arrange themselves, the solid
formed is often not crystalline or the arrangement is not regular. Such a solid is
called an amorphous solid. It displays short-range order but not the long-range
order (the order over many molecular, atomic, or ionic diameters) that is character-
istic of a crystal. Glass is a typical amorphous solid. A characteristic result of the
long-range ordering of a crystal is that it has a well-defined melting point, whereas
an amorphous solid merely softens as its temperature is increased. Many sub-
stances may solidify into either an amorphous state or a crystalline state depending
on how the substances are prepared; others exist only in one such state or the other.

Most common solids are polycrystalline; that is, they consist of many single crys-
tals that meet at grain boundaries. The size of a single crystal is typically a fraction of
a millimeter. However, large single crystals do occur naturally and can be produced
artificially. The most important property of a single crystal is the symmetry and reg-
ularity of its structure. It can be thought of as having a single unit structure that is re-
peated throughout the crystal. This smallest unit of a crystal is called the unit cell;
its structure depends on the type of bonding—ionic, covalent, metallic, hydrogen,
van der Waals—between the atoms, ions, or molecules. If more than one kind of
atom is present, the structure will also depend on the relative sizes of the atoms.

Figure 38-1 shows the structure unit cell of crystalline sodium chloride 
The and are spherically symmetric, and the is approximately
twice as large as the The minimum potential energy for this crystal occurs
when an ion of either kind has six nearest neighbors of the other kind. This struc-
ture is called face-centered-cubic (fcc). Note that the and in solid 
are not paired into molecules.NaCl

NaClClϪ ionsNaϩ

Naϩ ion.
ClϪ ionClϪ ionsNaϩ

(NaCl).
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* A large number of terms are needed to calculate the Madelung constant accurately because the sum converges
very slowly.

The net attractive part of the potential energy of an ion in a crystal can be written

38-1

where is the (center-to-center) separation distance between neighboring ions
( for the and in crystalline ) and called the Madelung
constant, depends on the geometry of the crystal. If only the six nearest neighbors of
each ion in a face-centered-cubic crystalline structure were important, would be
six. However, in addition to the six neighbors of the opposite charge at a distance 
there are twelve ions of the same charge at a distance eight ions of opposite
charge at a distance and so on. The Madelung constant is thus an infinite sum:

38-2

The value of the Madelung constant for face-centered-cubic structures is *a ϭ 1.7476.

a ϭ 6 Ϫ
1222

ϩ
823

Ϫ Á

23r,
22r,

r,
a

a,NaClClϪ ionsNaϩ0.281 nm
r

Uatt ϭ Ϫa
ke2

r

Crystal structure. (a) The hexagonal symmetry of a snowflake arises from a
hexagonal symmetry in its lattice of hydrogen atoms and oxygen atoms. (b)
(salt) crystals, magnified approximately thirty times. The crystals are built up from a
cubic lattice of sodium and chloride ions. In the absence of impurities, an exact cubic
crystal is formed. This (false-color) scanning electron micrograph shows that in
practice the basic cube is often disrupted by dislocations, giving rise to crystals that
have a wide variety of shapes. The underlying cubic symmetry, though, remains
evident. (c) A crystal of quartz the most abundant and
widespread mineral on Earth. If molten quartz solidifies without crystallizing, glass
is formed. (d) A soldering iron tip, ground down to reveal the copper core within its
iron sheath. Visible in the iron is its underlying microcrystalline structure.
((a) Richard Waters 2/89 p. 52 Discover. (b) © Dr. Jeremy Burgess/Science Photo Library/Photo
Researchers. (c) © Thomas R. Taylor/Photo Researchers. (d) Courtesy the AT&T Archives.)

(SiO2, silicon dioxide),

NaCl

(c)(b) (d)

(a)
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Example 38-1 Separation Distance between and in NaClClϪNaϩ

1. We consider each ion to occupy a cubic volume of side The volume of one
mole of equals the number of ions multiplied by the volume per ion:NaCl

vr0. v ϭ 2NAr
3
0

2. Relate to the density and the molar mass of NaCl:Mrr0 r ϭ
M
v

ϭ
M

2NA r
3
0

CHECK In Chapter 36, we found the diameter of the hydrogen atom in the ground state to be
about Our step 3 result is less than three times larger. Thus, is plausible.r0 ϭ 0.282 nm0.11 nm.

3. Solve for and substitute the known values:r30

so

0.282 nmr0 ϭ 2.82 ϫ 10Ϫ8 cm ϭ

ϭ 2.25 ϫ 10Ϫ23 cm3

r30 ϭ
M

2NAr
ϭ

58.4 g

2(6.02 ϫ 1023)(2.16 g>cm3)

When and are very close together, they repel each other because
of the overlap of their electron orbitals and the exclusion-principle repulsion
discussed in Section 37-1. A simple empirical expression for the potential energy
associated with this repulsion that works fairly well is

where and are constants. The total potential energy of an ion is then

38-3

The equilibrium separation is that at which the force is zero.
Differentiating and setting at we obtain

38-4

Substituting for in Equation 38-3 gives

38-5

At we have

38-6

If we know the equilibrium separation the value of can be found approximately
from the dissociation energy of the crystal, which is the energy needed to break up the
crystal into atoms.

nr0,

U(r0) ϭ Ϫa
ke2

r0
a1 Ϫ

1
n
br ϭ r0 ,

U ϭ Ϫa
ke2

r0
c r0
r

Ϫ
1
n
a r0
r
bn dA

A ϭ
ake2rnϪ1

0

n

r ϭ r0,dU>dr ϭ 0
F ϭ ϪdU>drr ϭ r0

U ϭ Ϫa
ke2

r
ϩ
A
rn

nA

Urep ϭ
A
rn

ClϪ ionsNaϩ

Calculate the equilibrium separation for from the measured density of which
is

PICTURE We consider each ion to occupy a cubic volume of side The mass of 1 mol of
is which is the sum of the molar masses of sodium and chlorine. There are

in 1 mol of where is Avogadro’s number.

SOLVE

NA ϭ 6.02 ϫ 1023NaCl,2NA ions
58.4 g,NaCl

r0.

r ϭ 2.16 g>cm3.
NaCl,NaClr0

The measured dissociation energy of is Using 
and the fact that 1 mol of has pairs of ions, we can express

the dissociation energy in electron volts per ion pair. The conversion between
electron volts per ion pair and kilojoules per mole is

1
eV

ion pair
ϫ

6.022 ϫ 1023 ion pairs

1 mol
ϫ

1.602 ϫ 10Ϫ19 J
1 eV

NANaCl1.602 ϫ 10Ϫ19 J
1 eV ϭ770 kJ>mol.NaCl
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The result is

38-7

Thus, per ion pair. Substituting for 
for and 1.75 for in Equation 38-6, we can solve for The result is 

Most ionic crystals, such as and have a face-centered-
cubic structure. Some elemental solids that have fcc structure are silver, aluminum,
gold, calcium, copper, nickel, and lead.

Figure 38-2 shows the structure of which is called the body-centered-cubic
(bcc) structure. In this structure, each ion has eight nearest neighbor ions of the op-
posite charge. The Madelung constant for these crystals is 1.7627. Elemental solids
that have bcc structure include barium, cesium, iron, potassium, lithium, molyb-
denum, and sodium.

CsCl,

AgCl,LiF, KF, KCl, KI,
n ϭ 9.35 ഠ 9.n.ar0,
U(r0), 0.282 nmϪ7.98 eV770 kJ>mol ϭ 7.98 eV

1
eV

ion pair
ϭ 96.47

kJ
mol

F I G U R E  3 8 - 4 Diamond crystal structure.
This structure can be considered to be
a combination of two interpenetrating face-
centered-cubic structures.

F I G U R E  3 8 - 3 Hexagonal close-packed
crystal structure.

Cs+

Cl–

Cs+

Cl–

F I G U R E  3 8 - 2 Body-centered-cubic
structure of the crystal.CsCl

Figure 38-3 shows another important crystal structure: the hexagonal close-packed
(hcp) structure. This structure is obtained by stacking identical spheres, such as
bowling balls. In the first layer, each ball touches six others; thus, the name hexagonal.
In the next layer, each ball fits into a triangular depression of the first layer. In the
third layer, each ball fits into a triangular depression of the second layer, so it lies di-
rectly over a ball in the first layer. Elemental solids that have hcp structure include
beryllium, cadmium, cerium, magnesium, osmium, and zinc.

For solids that have covalent bonding, the crystal structure is determined by the
configuration of the bonds. Figure 38-4 illustrates the diamond structure of carbon,
in which each atom is bonded to four other atoms as a result of hybridization,
which is discussed in Section 37-2. This configuration is also the structure of
germanium and silicon.
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38-2 A MICROSCOPIC PICTURE
OF CONDUCTION

We consider a metal as a regular three-dimensional lattice of ions filling some volume
and having a large number of electrons that are free to move throughout the

whole metal. The number of free electrons in a metal is approximately one to four
electrons per atom. In the absence of an electric field, the free electrons move about
the metal randomly, much the way gas molecules move about in a container.

The current in a conducting wire segment is proportional to the voltage drop
across the segment:

The resistance is proportional to the length of the wire segment and inversely
proportional to the cross-sectional area 

R ϭ r
L
A

A:
LR

I ϭ
V
R

(or V ϭ IR)

NV

(a)

(d) (e)

(b)

(c)

Carbon exists in three well-defined crystalline forms: diamond,
graphite, and fullerenes (short for “buckminsterfullerenes”). Fullerenes
were discovered in 1985. The forms differ in how the carbon atoms are
packed together in a lattice. A fourth form of carbon, in which no well-
defined crystalline form exists, is common charcoal. (a) Synthetic
diamonds, magnified approximately 75,000 times. In diamond, each
carbon atom is centered in a tetrahedron of four other carbon atoms.
The strength of these bonds accounts for the hardness of a diamond.
(b) An atomic-force micrograph of graphite. In graphite, carbon atoms
are arranged in sheets, where each sheet is made up of atoms in
hexagonal rings. The sheets slide easily across one another, a property
that allows graphite to function as a lubricant. (c) A single sheet of
carbon rings can be closed on itself if certain rings are allowed to be
pentagonal, instead of hexagonal. A computer-generated image of the
smallest such structure, is shown here. Each of the sixty vertices
corresponds to a carbon atom; twenty of the faces are hexagons and
twelve of the faces are pentagons. The same geometric pattern is
encountered in a soccer ball. (d) Fullerene crystals, in which C60

C60,

molecules are close-packed. The smaller crystals tend to form thin
brownish platelets; larger crystals are usually rodlike in shape.
Fullerenes exist in which more than sixty carbon atoms appear. In the
crystals shown here, about one-sixth of the molecules are 
(e) Carbon nanotubes have very interesting electrical properties. A
single graphite sheet is a semimetal, which means that it has properties
intermediate between those of semiconductors and those of metals.
When a graphite sheet is rolled into a nanotube, not only do the carbon
atoms have to line up around the circumference of the tube, but the
wave functions of the electrons must also match up. This boundary-
matching requirement places restrictions on these wave functions,
which affects the motion of the electrons. Depending on exactly how
the tube is rolled up, the nanotube can be either a semiconductor or a
metal. ((a) Chris Kovach 3/91 p. 69 Discover. (b) Srinivas Manne, University of
California, Santa Barbara. (c) Dr. F. A. Quiocho and J. S. Spurlino/Howard
Hughes Medical Institute, Baylor College of Medicine. (d) W. Krätschmer/
Max-Planck-Institute for Nuclear Physics. (e) © Kenneth Weard/BioGrafx/
Science Source/Photo Researchers.)

C70.
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38-8

DEFINITION—CURRENT DENSITY

J
S

ϭ qnvSd

where and are the charge, the number density, and the drift velocity of the
charge carrier. (This follows from Equation 25-3.) In vector form, the relation
between the current density and the electric field is

38-9

This relation is the point form of Ohm’s law. The reciprocal of the resistivity is
called the conductivity.

According to Ohm’s law, the resistivity is independent of both the current den-
sity and the electric field Combining Equations 38-8 and 38-9 gives

38-10

where and have been substituted for and respectively. According to
Equation 38-10, the drift velocity is proportional to 

In the presence of an electric field, a free electron experiences a force If this
were the only force acting, the electron would have a constant acceleration

However, Equation 38-10 implies a steady-state situation with a constant
drift velocity that is proportional to the field In the microscopic model, it is as-
sumed that a free electron is accelerated for a short time and then makes a collision
with a lattice ion. The velocity of the electron immediately after the collision is
completely unrelated to the drift velocity. The justification for this assumption is
that the magnitude of the drift velocity is extremely small compared with the
speeds associated with the thermal kinetic energies of the free electrons.

For a typical free electron, its velocity a time after its last collision is
where is its velocity immediately after that collision. Because

the direction of is random, it does not contribute to the average velocity of the
electrons. Thus, the average velocity or drift velocity of the electrons is

38-11

where is the average time since the last collision. Substituting for in Equation
38-10, we obtain

so

38-12

The time called the collision time, is also the average time between collisions.*t,

r ϭ
me

ne e
2t

Ϫnee a eESme

tb ϭ
1
r

E
S

vSdt

vSd ϭ Ϫ
eE

S

me

t

vS0

vS0vS0 Ϫ (ϪeE
S>me)t,

t

E
S

.
ϪeE

S>me.

ϪeE
S

.
E
S

.vSd

n,qneϪe

Ϫenev
S

d ϭ
1
r

E
S

E
S

.

J
S

ϭ
1
r

E
S

vSdq, n,

where is the resistivity. Substituting for and for we can write the
current in terms of the electric field strength and the resistivity. We have

Dividing both sides by the area gives or where 
is the magnitude of the current density vector The current density vector is de-
fined as

J
S

.
J ϭ I>AJ ϭ (1>r)E,I>A ϭ (1>r)E,A

I ϭ
V
R

ϭ
EL
rL>A ϭ

1
r
EA

E
V,ELR,rL>Ar

* It is tempting but incorrect to think that if is the average time between collisions, the average time since its last col-
lision is rather than If you find this confusing, you may take comfort in the fact that Drude used the incorrect re-
sult in his original work.1

2 t

t.1
2 t

t
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* See Equation 17–21.

The average distance an electron travels between collisions is which is called
the mean free path 

38-13

where is the mean speed of the electrons. (The mean speed is many orders of
magnitude greater than the drift speed.) In terms of the mean free path and the
mean speed, the resistivity is

vav

l ϭ vavt

l:
vavt,

Area = pr2

Lattice ion

v¢ t1

Electron

v¢ t2 v¢ t3

Radius = r

F I G U R E  3 8 - 5 Model of an electron
moving through the lattice ions of a
conductor. The electron, which is considered
to be a point particle, collides with an ion if it
comes within a distance of the center of the
ion, where is the radius of the ion. If the
electron speed is it collides in time with
all the ions whose centers are in the volume

While this picture is in accord with the
classical Drude model for conduction in
metals, it is in conflict with the current
quantum-mechanical model presented later in
this chapter.

pr2v¢t.

¢tv,
r

r

38-14

RESISTIVITY IN TERMS OF AND lvAV

r ϭ
mevav

nee
2l

According to Ohm’s law, the resistivity is independent of the electric field 
Because and are constants, the only quantities that could possibly depend
on are the mean speed and the mean free path Let us examine these 
quantities to see if they can possibly depend on the applied field 

CLASSICAL INTERPRETATION OF AND 

Classically, at all the free electrons in a conductor should have zero kinetic
energy. As the conductor is heated, the lattice ions acquire an average kinetic en-
ergy of which is imparted to the free electrons by the collisions between the
electrons and the ions. (This is a result of the equipartition theorem studied in
Chapters 17 and 18.) The free electrons would then have a Maxwell–Boltzmann
distribution just like a gas of molecules. In equilibrium, the electrons would be ex-
pected to have a mean kinetic energy of which at ordinary temperatures

is approximately At their root-mean-square (rms)
speed,* which is slightly greater than the mean speed, is

38-15

Note that this is about nine orders of magnitude greater than the typical drift speed
of which was calculated in Example 25-1. The very small drift
speed caused by the electric field therefore has essentially no effect on the very
large mean speed of the electrons, so in Equation 38-14 cannot depend on the
electric field 

The mean free path is related classically to the size of the lattice ions in the con-
ductor and to the number of ions per unit volume. Consider one electron moving
with speed through a region of stationary ions that are assumed to be hard
spheres (Figure 38-5). Assume the size of the electron is negligible. The electron
will collide with an ion if it comes within a distance from the center of the ion,
where is the radius of the ion. During some time interval the electron moves
a distance If there is an ion whose center is in the cylindrical volume 
the electron will collide with the ion. The electron will then change directions and
collide with another ion in time if the center of the ion is in the volume 
Thus, in the total time the electron will collide with the
number of ions whose centers are in the volume The number of ions
in this volume is where is the number of ions per unit volume.nionnionpr

2v¢t,
pr2v¢t.

¢t ϭ ¢t1 ϩ ¢t2 ϩ Á ,
pr2vt2.¢t2

pr2v¢t1,vt1.
¢t1,r

r

v

E
S

.
vav

3.5 ϫ 10Ϫ5 m>s,

ϭ 1.17 ϫ 105 m>svav ഠ vrms ϭ A3kT
me

ϭ A3(1.38 ϫ 10Ϫ23 J>K)(300 K)
9.11 ϫ 10Ϫ31kg

T ϭ 300 K,0.04 eV.(~300 K)

3
2 kT,

3
2 kT,

T ϭ 0

lvav

E
S

.
l.vavE

S
eme, ne,

E
S

.r
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The total path length divided by the number of collisions is the mean free path:

38-16

where is the cross-sectional area of a lattice ion.

SUCCESSES AND FAILURES OF THE CLASSICAL MODEL

Neither nor depends on the electric field so also does not depend on 
and do not depend on according to their classical interpretations, so the 

resistivity does not depend on in accordance with Ohm’s law. However, the
classical theory gives an incorrect temperature dependence for the resistivity.
Because depends only on the radius and the number density of the lattice ions,
the only quantity in Equation 38-14 that depends on temperature in the classical
theory is which is proportional to But experiments show that varies lin-
early with temperature. Furthermore, when is calculated at using the
Maxwell–Boltzmann distribution for and Equation 38-16 for the calculated
result is about six times greater than the measured value.

The classical theory of conduction fails because electrons are not classical particles.
The wave nature of the electrons must be considered. Because of the wave proper-
ties of electrons and the constraints described by the exclusion principle (to be dis-
cussed in the following section), the energy distribution of the free electrons in a
metal is not even approximately given by the Maxwell–Boltzmann distribution.
Furthermore, the collision of an electron with a lattice ion is not similar to the colli-
sion of a baseball with a tree. Instead, it involves the scattering of electron waves by
the lattice. To understand the quantum theory of conduction, we need a qualitative
understanding of the energy distribution of free electrons in a metal. This will also
help us understand the origin of contact potentials between two dissimilar metals
in contact and the contribution of free electrons to the heat capacity of metals.

38-3 FREE ELECTRONS IN A SOLID

One may want to consider free electrons in a metal to be an electron gas in a metal.
However, molecules in an ordinary gas, such as air, obey the classical
Maxwell–Boltzmann energy distribution, but the free electrons in a metal do not.
Instead, they obey a quantum energy distribution called the Fermi–Dirac distribution.
The main features of a free electron can be understood by considering the electron
in a metal to be a particle in a box, a problem whose one-dimensional version
we studied extensively in Chapter 34. We discuss the main features of a free elec-
tron semiquantitatively in this section and leave the details of the Fermi–Dirac
distribution to Section 38-9.

ENERGY QUANTIZATION IN A BOX

In Chapter 34, we found that the wavelength associated with an electron of
momentum is given by the de Broglie relation:

38-17

where is Planck’s constant. When a particle is confined to a finite region of space,
such as a box, only certain wavelengths where that are specified
by standing-wave conditions are allowed. For a one-dimensional box of length 
the standing-wave condition is

38-18n
ln

2
ϭ L n ϭ 1, 2, Á

L,
n ϭ 1, 2, Á ,ln,

h

l ϭ
h
p

p

l,vav

T ϭ 300 Kr

r2T.vav,

l

E
S

r

E
S

lvav

E
S

.lE
S

,rnion

A ϭ pr2

l ϭ
v¢t

nionpr
2v¢t

ϭ
1

nionpr
2 ϭ

1
nionA
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This results in the quantization of energy:

or

38-19

where The spatial wave function for the state is given by

38-20

The quantum number characterizes the wave function for a particular state and
the energy of that state. In three-dimensional problems, three quantum numbers
arise, one associated with each dimension.

THE EXCLUSION PRINCIPLE

The distribution of electrons among the possible energy states is described by the
exclusion principle, which states that no two electrons in an atom can be in the
same quantum state; that is, they cannot have the same set of values for their quan-
tum numbers. The exclusion principle applies to all “spin one-half” particles
(fermions), which include electrons, protons, and neutrons. These particles have a
spin quantum number which has two possible values, and The quantum
state of a particle is characterized by the spin quantum number and the quan-
tum numbers associated with the spatial part of the wave function. Because the
spin quantum numbers have just two possible values, the exclusion principle can
be stated in terms of the spatial states:

ms

Ϫ1
2.ϩ1

2ms

n

cn(x) ϭ A 2
L

sin(npx>L)

nthE1 ϭ h2>(8mL2).

En ϭ n2E1

En ϭ
p2
n

2m
ϭ

(h>ln)2

2m
ϭ
h2

2m
1
l2
n

ϭ
h2

2m
1

(2L>n)2

When there are more than two electrons in a system, such as an atom, only two can
be in the lowest energy state. The third and fourth electrons must go into the second-
lowest state, and so on.

There can be at most two electrons with the same set of values for their spatial
quantum numbers.

EXCLUSION PRINCIPLE IN TERMS OF SPATIAL STATES

Example 38-2 Boson-System Energy versus 
Fermion-System Energy

Compare the total energy of the ground state of five identical bosons of mass in a one-
dimensional box with the total energy of the ground state of five identical fermions of
mass in the same box.

PICTURE The ground state is the lowest possible energy state. The energy levels in a
one-dimensional box are given by where (This is in accord
with Equation 38-19.) The lowest energy for five bosons occurs when all the bosons
are in the state as shown in Figure 38-6a. For fermions, the lowest state occurs
when two fermions are in the state two fermions are in the state and one
fermion is in the state as shown in Figure 38-6b.n ϭ 3,

n ϭ 2,n ϭ 1,
n ϭ 1,

E1 ϭ h2>(8mL2).En ϭ n2E1,

m

m

5

4

3

2

1

E

E

E

E

E

2

1 1

3

4

5 5

4

3

2

1

E

E

E

E

E

2

3

4

5

Bosons Fermions
(a) (b)F I G U R E  3 8 - 6
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EF

F I G U R E  3 8 - 7 At the electrons fill
up the allowed energy states to the Fermi
energy The levels are so closely spaced that
they can be assumed to be continuous.

EF.

T ϭ 0

1. The energy of five bosons in the
state is:n ϭ 1

2. The energy of two fermions in the
state two fermions in the
state and one fermion in the
state is:n ϭ 3

n ϭ 2,
n ϭ 1, ϭ 2E1 ϩ 8E1 ϩ 9E1 ϭ 19E1

E ϭ 2E1 ϩ 2E2 ϩ 1E3 ϭ 2E1 ϩ 2(2)2E1 ϩ 1(3)2E1

3. Compare the total energies: The five identical fermions have 3.8 times
the total energy of the five identical bosons.

CHECK The fact that fermions must have different quantum states has a large effect on the
total energy of a multiple-particle system, as expected.

THE FERMI ENERGY

When there are many electrons in a box, at the electrons will occupy the low-
est energy states consistent with the exclusion principle. If we have electrons, we
can put two electrons in the lowest energy level, two electrons in the next lowest
energy level, and so on. The electrons thus fill the lowest energy levels
(Figure 38-7). The energy of the last filled (or half-filled) level at is called the
Fermi energy If the electrons moved in a one-dimensional box, the Fermi en-
ergy would be given by Equation 38-19, with 

38-21

FERMI ENERGY AT T ϭ 0 IN ONE DIMENSION

In a one-dimensional box, the Fermi energy depends on the number of free elec-
trons per unit length of the box.

EF ϭ aN
2
b 2 h2

8meL
2 ϭ

h2

32me

aN
L
b 2

n ϭ N>2:
EF.

T ϭ 0
N>2N

N
T ϭ 0

PRACTICE PROBLEM 38-1

Suppose there is an ion, and therefore a free electron, every in a one-dimensional
box. Calculate the Fermi energy. Hint: Write Equation 38-21 as

EF ϭ
(hc)2

32mec
2 aNL b 2

ϭ
(1240 eV # nm)2

32(0.511 MeV)
aN
L
b 2

0.100 nm

In our model of conduction, the free electrons move in a three-dimensional box
of volume The derivation of the Fermi energy in three dimensions is some-
what difficult, so we will just give the result. In three dimensions, the Fermi en-
ergy at is

38-22a

FERMI ENERGY AT T ϭ 0 IN THREE DIMENSIONS

The Fermi energy depends on the number density of free electrons Substituting
numerical values for the constants gives

38-22b

FERMI ENERGY AT T ϭ 0 IN THREE DIMENSIONS

EF ϭ (0.3646 eV # nm2)aN
V
b 2>3

N>V.

EF ϭ
h2

8me

a 3N
pV
b 2>3T ϭ 0

V.

SOLVE

E ϭ 5E1
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Table 38-1 lists the free-electron number densities and Fermi energies at 
for several metals.

The free electrons in a metal are sometimes referred to as a Fermi gas. (They con-
stitute a gas of fermions.) The average energy of a free electron can be calculated
from the complete energy distribution of the electrons, which is discussed in
Section 38-9. At the average energy turns out to beT ϭ 0,

T ϭ 0

Example 38-3 The Fermi Energy for Copper

The number density for electrons in copper was calculated in Example 25-1 and found to be
Calculate the Fermi energy at for copper.

PICTURE The Fermi energy is given by Equations 38-22.

SOLVE

T ϭ 084.7>nm3.

1. The Fermi energy is given by Equation 38-22b: EF ϭ (0.3646 eV # nm2)aN
V
b 2>3

2. Substitute the given number density for copper:

7.03 eVϭ

EF ϭ (0.3646 eV # nm2)(84.7>nm3)2>3

CHECK The Fermi energy (the step-2 result) is much greater than at room temperatures
as expected. For example, at is only about 

PRACTICE PROBLEM 38-2 Use Equation 38-22b to calculate the Fermi energy at for
gold, which has a free-electron number density of 59.0>nm3.

T ϭ 0

0.026 eV.T ϭ 300 K, kT
kT

38-23

AVERAGE ENERGY OF ELECTRONS IN A FERMI GAS AT T ϭ 0

Eav ϭ 3
5EF

Table 38-1 Free-Electron Number Densities* and Fermi Energies

at T � 0 for Selected Elements

Element

Al Aluminum 181 11.7

Ag Silver 58.6 5.50

Au Gold 59.0 5.53

Cu Copper 84.7 7.03

Fe Iron 170 11.2

K Potassium 14.0 2.11

Li Lithium 47.0 4.75

Mg Magnesium 86.0 7.11

Mn Manganese 165 11.0

Na Sodium 26.5 3.24

Sn Tin 148 10.2

Zn Zinc 132 9.46

* Number densities are measured using the Hall effect, discussed in Section 26-4.

EF, eVN>V, electrons>nm3
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f (E)

1

0
E EF

F I G U R E  3 8 - 8 Fermi factor versus energy
at T ϭ 0.

For copper, is approximately This average energy is huge compared with
thermal energies of about at a temperature of This result
is very different from the classical Maxwell–Boltzmann distribution result that at

and that at some temperature is of the same order as 

THE FERMI FACTOR AT T � 0

The probability of an energy state being occupied is called the Fermi factor,
At all the states below are filled, whereas all those above that energy are
empty, as shown in Figure 38-8. Thus, at the Fermi factor is simply

38-24

THE FERMI FACTOR FOR 

At temperatures greater than some electrons will occupy higher energy
states because of thermal energy gained during collisions with the lattice.
However, an electron cannot move to a higher or lower state unless it is unoccu-
pied. Because the kinetic energy of the lattice ions is of the order of electrons
cannot gain much more energy than in collisions with the lattice ions.
Therefore, only those electrons that have energies within about of the Fermi en-
ergy can gain energy as the temperature is increased. At is only 
so the exclusion principle prevents all but a very few electrons near the top of the
energy distribution from gaining energy through random collisions with the lattice
ions. Figure 38-9 shows a plot of the Fermi factor for some temperature Because
for there is no distinct energy that separates filled levels from unfilled lev-
els, the definition of the Fermi energy must be slightly modified. At temperature

the Fermi energy is defined to be the energy of the energy state for which
the probability of being occupied is For all but extremely high temperatures, the
difference between the Fermi energy at temperature and the Fermi energy at
temperature is very small.

The Fermi temperature is defined by

38-25

For temperatures much lower than the Fermi temperature, the average energy of
the lattice ions will be much less than the Fermi energy, and the electron energy
distribution will not differ greatly from that at T ϭ 0.

kTF ϭ EF

TF

T ϭ 0
T

1
2.

T,

T Ͼ 0
T.

0.026 eV,300 K, kT
kT

kT
kT,

T ϭ 0,

T>0

f(E) ϭ e1 E Ͻ EF

0 E Ͼ EF

T ϭ 0
EFT ϭ 0

f(E).

kT.T, ET ϭ 0, E ϭ 0,

T ϭ 300 K.kT ഠ 0.026 eV
4 eV.Eav

f (E)

1

0
E EF

1––
2

F I G U R E  3 8 - 9 The Fermi factor for some
temperature Some electrons that have
energies near the Fermi energy are excited, as
indicated by the shaded regions. The Fermi
energy is that value of for which f(E) ϭ 1

2.EEF

T.

Example 38-4 The Fermi Temperature for Copper

Find the Fermi temperature for copper.

PICTURE We use Equation 38-25 to find the Fermi temperature. The Fermi energy for
copper at calculated in Example 38-3, is 

SOLVE

7.03 eV.T ϭ 0,

Use and in Equation 38-25:k ϭ 8.617 ϫ 10Ϫ5 eV>KEF ϭ 7.03 eV 81 600 KTF ϭ
EF

k
ϭ

7.03 eV
8.617 ϫ 10Ϫ5 eV>K ϭ

CHECK The Fermi temperature is very high, as expected.

TAKING IT FURTHER We can see from this example that the Fermi temperature of copper
is much greater than any temperature for which copper remains a solid.T



The dashed curve in Figure 38-10 shows the Fermi
factor after the electric field has been acting for some
time Although all of the free electrons have their ve-
locities shifted in the direction opposite to the electric
field, the net effect is equivalent to shifting only the
electrons near the Fermi energy.

CONTACT POTENTIAL

When two different metals are placed in contact, a po-
tential difference called the contact potential de-
velops between them. The contact potential depends on
both the work functions of the two metals, and 
(we encountered work functions when the photoelec-
tric effect was introduced in Chapter 34), and the Fermi
energies of the two metals. When the metals are in con-
tact, the total energy of the system is lowered if elec-
trons near the boundary move from the metal that has
the higher Fermi energy into the metal that has the
lower Fermi energy until the Fermi energies of the two
metals are the same, as shown in Figure 38-11. When
equilibrium is established, the metal that has the lower
initial Fermi energy is negatively charged and the other metal is positively charged,
so that between them there is a potential difference given by

38-27

Table 38-2 lists the work functions for several metals.

Vcontact ϭ
f1 Ϫ f2

e

Vcontact

f2f1

Vcontact

t.

Because an electric field in a conductor accelerates all of the con-
duction electrons together, the exclusion principle does not prevent
the free electrons in filled states from participating in conduction.
Figure 38-10 shows the Fermi factor in one dimension versus velocity
for an ordinary temperature. The factor is approximately 1 for ve-
locities in the range where the Fermi speed is
related to the Fermi energy by Then

38-26uF ϭ A2EF

me

EF ϭ 1
2mu2

F.
uFϪuF Ͻ vx Ͻ uF,vx
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No electric field With electric field

f (E)

–u +u vxF F

F I G U R E  3 8 - 1 0 Fermi factor versus velocity in one
dimension with no electric field (solid) and with an electric field in
the direction (dashed). The difference is greatly exaggerated.Ϫx

Metal 1 Metal 2 Metal 1 Metal 2

+
+
+
+
+

–
–
–
–
–

Allowed

Occupied

φ

Electrons at rest
outside either metal

1
φ 2

φ1 φ2

EF2

EF1
EF

–

Touching

(a) (b)

F I G U R E  3 8 - 1 1 (a) Energy levels for two different metals that have
different Fermi energies and work functions The work function is the
difference between the energy of an electron at rest outside the metal and the
Fermi energy within the metal. (b) When the metals are in contact, electrons
flow from the metal that initially has the higher Fermi energy to the metal that
initially has the lower Fermi energy until the Fermi energies are equal.

f.EF

Example 38-5 The Fermi Speed for Copper

Calculate the Fermi speed for copper.

PICTURE We use Equation 38-26 to find the Fermi speed. The Fermi energy for copper at
calculated in Example 38-3, is 

SOLVE

7.03 eV.T ϭ 0,

Use Equation 38-26 with EF ϭ 7.03 eV:  1.57 ϫ 106 m>s.uF ϭ A 2(7.03 eV)
9.11 ϫ 10Ϫ31 kg

a1.60 ϫ 10Ϫ19 J
1 eV

b ϭ

CHECK As expected, the result (the Fermi speed for copper) is high, but less than the speed
of light.
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Table 38-2 Work Functions for Some Metals

Metal Metal

Ag Silver 4.7 K Potassium 2.1
Au Gold 4.8 Mn Manganese 3.8
Ca Calcium 3.2 Na Sodium 2.3
Cu Copper 4.1 Ni Nickel 5.2

f, eVf, eV

Example 38-6 Contact Potential between Silver and Tungsten

The threshold wavelength for the photoelectric effect is 271 nm for tungsten and 262 nm for
silver. What is the contact potential developed when silver and tungsten are placed in contact?

PICTURE The contact potential is proportional to the difference in the work functions for
the two metals (Equation 38-27). The work function can be found from the given thresh-
old wavelengths using (Equation 34-4).

SOLVE

f ϭ hc>lt

f

1. The contact potential is given by Equation 38-27: Vcontact ϭ
f1 Ϫ f2

e

2. The work function is related to the threshold wavelength
(Equation 34-4):

f ϭ
hc
lt

3. Substitute for tungsten (the symbol for tungsten 
is W):

lt ϭ 271 nm fW ϭ
hc
lt

ϭ
1240 eV # nm

271 nm
ϭ 4.58 eV

CHECK As expected, the contact potential is small (less than one volt). You do not get large
potential differences just by putting two metals in contact.

4. Substitute for silver:lt ϭ 262 nm fAg ϭ
1240 eV # nm

262 nm
ϭ 4.73 eV

5. The contact potential is thus: 0.15 VVcontact ϭ
fAg Ϫ fW

e
ϭ 4.73 V Ϫ 4.58 V ϭ

HEAT CAPACITY DUE TO ELECTRONS IN A METAL

The quantum-mechanical description of the electron distribution in metals allows
us to understand why the contribution of the free electrons to the heat capacity of
a metal is much less that of the ions. According to the classical equipartition the-
orem, the energy of the lattice ions in moles of a solid is and thus the
molar specific heat is where is the universal gas constant (see Section
18-7). In a metal, the number of free electrons is approximately equal to the num-
ber of lattice ions. If these electrons obey the classical equipartition theorem, they
should have an energy of and contribute an additional to the molar spe-
cific heat. But measured heat capacities of metals are just slightly greater than
those of insulators. We can understand this result because at some temperature 
only those electrons that have energies near the Fermi energy can be excited by
random collisions with the lattice ions. The number of those electrons is of the
order of where is the total number of free electrons. The energy of
those electrons is increased from that at by an amount that is of the order
of So the total increase in thermal energy is of the order of (kT>EF)N ϫ kT.kT.

T ϭ 0
N(kT>EF)N,

T,

3
2R

3
2nRT

RcЈ ϭ 3R,
3nRT,n
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We can thus express the energy of electrons at temperature as

38-28

where is the average energy at and is a constant that we expect to be
of the order of 1 if our reasoning is correct. The calculation of is quite challeng-
ing. The result is Using this result and writing in terms of the Fermi
temperature, we obtain the following for the contribution of the free elec-
trons to the heat capacity at constant volume:

where we have written in terms of the gas constant The molar
specific heat at constant volume is then

38-29

We can see that because of the large value of the contribution of the free elec-
trons is a small fraction of at ordinary temperatures. Because for
copper, the molar specific heat of the free electrons at is

which is in good agreement with the experiment.

38-4 QUANTUM THEORY OF 
ELECTRICAL CONDUCTION

We can use Equation 38-14 for the resistivity if we use the Fermi speed (Equation
38-26) in place of 

38-30

We now have two problems. First, because the Fermi speed is approximately in-
dependent of temperature, the resistivity given by Equation 38-30 is independent
of temperature unless the mean free path should depend on the temperature. The
second problem concerns magnitudes. As mentioned earlier, the classical expres-
sion for resistivity using calculated from the Maxwell–Boltzmann distribution
gives values that are about 6 times too large at Because the Fermi speed

is about 16 times the Maxwell-Boltzmann value of the magnitude of pre-
dicted by Equation 38-30 will be approximately 100 times greater than the experi-
mentally determined value. The resolution of both of these problems lies in the
calculation of the mean free path 

THE SCATTERING OF ELECTRON WAVES

In Equation 38-16 for the classical mean free path the quantity
is the cross-sectional area of the lattice ion as seen by an electron. In the

quantum calculation, the mean free path is related to the scattering of electron
waves by the crystal lattice. Detailed calculations show that, for a perfectly
ordered crystal, that is, there is no scattering of the electron waves. The
scattering of electron waves arises because of imperfections in the crystal lattice,
which have nothing to do with the actual cross-sectional area of the lattice ions.A

l ϭ ϱ;

A ϭ pr2
l ϭ 1>(nionA),

l.

rvav,uF

T ϭ 300 K.
vav

uF

r ϭ
meuF

nee
2l

vav:
uF

c œV ϭ
1
2
p2 300 K

81600 K
R ഠ 0.02R

T ϭ 300 K
TF ϭ 81 600 KR

TF,

c œV ϭ
1
2
p2R

T
TF

R (R ϭ Nk>n).Nk

CV ϭ
dE
dT

ϭ 2aNk
kT
EF

ϭ
1
2
p2nR

T
TF

EF ϭ kTF ,
EFa ϭ p2>4.

a

aT ϭ 0Eav(0)

E ϭ NEav(0) ϩ aN
kT
EF

kT

TN



According to the quantum theory of electron scattering, depends merely on
deviations of the lattice ions from a perfectly ordered array and not on the size
of the ions. The most common causes of such deviations are thermal vibrations of
the lattice ions or impurities.

We can use for the mean free path if we reinterpret the area 
Figure 38-12 compares the classical picture and the quantum picture of this area. In
the quantum picture, the lattice ions are points that have no size but present an
area where is the amplitude of thermal vibrations. In Chapter 14, we
saw that the energy of vibration in simple harmonic motion is proportional to the
square of the amplitude, which is Thus, the effective area is proportional to
the energy of vibration of the lattice ions. From the equipartition theorem,* we
know that the average energy of vibration is proportional to Thus, is pro-
portional to and is proportional to Then the resistivity given by Equation
38-14 is proportional to in agreement with experiment.

The effective area due to thermal vibrations can be calculated, and the
results give values for the resistivity that are in agreement with experiments.
At for example, the effective area turns out to be about 100 times
smaller than the actual cross-sectional area of a lattice ion. We see, therefore, that
the free-electron model of metals gives a good account of electrical conduction
if the classical mean speed is replaced by the Fermi speed and if the colli-
sions between electrons and the lattice ions are interpreted in terms of the scat-
tering of electron waves, for which only deviations from a perfectly ordered
lattice are important.

The presence of impurities in a metal also causes deviations from perfect regu-
larity in the crystal lattice. The effects of impurities on resistivity are approximately
independent of temperature. The resistivity of a metal containing impurities can be
written where is the resistivity due to the thermal motion of the
lattice ions and is the resistivity due to impurities. Figure 38-13
shows typical resistance versus temperature curves for metals with
impurities. As the absolute temperature approaches zero, the resis-
tivity due to thermal motion approaches zero, and the total resistivity
approaches the resistivity due to impurities, which is constant.

38-5 BAND THEORY OF SOLIDS

Resistivities vary enormously between insulators and conductors.
For a typical insulator, such as quartz, whereas for a
typical conductor, The reason for this enormous vari-
ation is the variation in the number density of free electrons To
understand this variation, we consider the effect of the lattice on the
electron energy levels.

We begin by considering the energy levels of the individual atoms
as they are brought together. The allowed energy levels in an isolated
atom are often far apart. For example, in hydrogen, the lowest al-
lowed energy is below the next lowest allowed
energy † Let us consider two identical
atoms and focus our attention on one particular energy level. When the atoms are
far apart, the energy of a particular level is the same for each atom. As the atoms
are brought closer together, the energy level for each atom changes because of the
influence of the other atom. As a result, the level splits into two levels of slightly
different energies for the two-atom system. If we bring three atoms close together,

E2 ϭ (Ϫ13.6 eV)>4 ϭ Ϫ3.4 eV.
10.2 eVE1 ϭ Ϫ13.6 eV

ne.
r ~ 10Ϫ8 Æ # m.

r ~ 1016 Æ # m,

ri

rtr ϭ rt ϩ ri ,

uFvav

T ϭ 300 K,

A
T,

1>T.lT,
AkT.

Apr20.

r0A ϭ pr20,

A.l ϭ 1>(nionA)

A
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A = πr2

r

A = πr2
0

r0

(a)

(b)

F I G U R E  3 8 - 1 2 (a) Classical picture of
the lattice ions as spherical balls of radius 
that each present an area to the electrons.
(b) Quantum-mechanical picture of the lattice
ions as points that are vibrating in three
dimensions. The area presented to the
electrons is where is the amplitude of
oscillation of the ions.

r0pr20 ,

pr2
r

* The equipartition theorem does hold for the lattice ions, which obey the Maxwell–Boltzmann energy distribution.
† The energy levels in hydrogen are discussed in Chapter 36. 

R/R

T, K

290 K

4.0 × 10 –3

3.0 × 10 –3

2.0 × 10 –3

1.0 × 10 –3

2 4 6 8 10 12 14 16 18 20

F I G U R E  3 8 - 1 3 Relative resistance versus temperature
for three samples of sodium. The three curves have the same
temperature dependence but different magnitudes because of
differing amounts of impurities in the samples.



a particular energy level splits into three separate levels of slightly dif-
ferent energies. Figure 38-14 shows the energy splitting of two energy
levels for six atoms as a function of the separation of the atoms.

If we have identical atoms, a particular energy level in the iso-
lated atom splits into different, closely spaced energy levels when
the atoms are close together. In a macroscopic solid, is very large—
of the order of —so each energy level splits into a very large num-
ber of levels called a band. The levels are spaced almost continuously
within the band. There is a separate band of levels for each particular
energy level of the isolated atom. The bands may be widely separated
in energy, they may be close together, or they may even overlap, de-
pending on the kind of atom and the type of bonding in the solid.

The lowest energy bands, corresponding to the lowest energy lev-
els of the atoms in the lattice, are filled with electrons that are bound
to the individual atoms. The electrons that can take part in conduc-
tion occupy the higher energy bands. The highest energy band that
contains electrons is called the valence band. The valence band may
be completely filled with electrons or only partially filled, depending
on the kind of atom and the type of bonding in the solid.

We can now understand why some solids are conductors and why others are in-
sulators. If the valence band is only partially filled, there are many available empty
energy states in the band, and the electrons in the band can easily be raised to a
higher energy state by an electric field. Accordingly, this substance is a good con-
ductor. If the valence band is filled and there is a large energy gap between it and
the next available band, an applied electric field may be too weak to excite an elec-
tron from the upper energy levels of the filled band across the large gap into the en-
ergy levels of the empty band, so the substance is an insulator. The lowest band in
which there are unoccupied states is called the conduction band. In a conductor,
the valence band is only partially filled, so the valence band is also the conduction
band. An energy gap between allowed bands is called a forbidden energy band.

The band structure for a conductor, such as copper, is shown in Figure 38-15a.
The lower bands (not shown) are filled with the lower energy electrons of the
atoms. The valence band is only about half-filled. When an electric field is estab-
lished in the conductor, the electrons in the conduction band are accelerated, which
means that their energies are increased. This is consistent with the exclusion prin-
ciple because there are many empty energy states just above those occupied by
electrons in this band. These electrons are thus the conduction electrons.

Figure 38-15b shows the band structure for magnesium, which is also a conduc-
tor. In this case, the highest occupied band is completely filled, but there is an
empty band above it that overlaps it. The two bands thus form a combined
valence–conduction band that is only partially filled.

Figure 38-15c shows the band structure for a typical insulator. At the va-
lence band is completely filled. The next energy band having empty energy states,
the conduction band, is separated from the valence band by a large energy gap.

T ϭ 0 K,

1023
N

N
N
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Closely spaced
energy levels
within the bands

SemiconductorInsulatorConductorConductor

OverlapAllowed, empty

Forbidden

Allowed, occupied

(a) (b) (c) (d)

F I G U R E  3 8 - 1 5 Four possible band
structures for a solid. (a) A typical conductor.
The valence band is also the conduction band.
It is only partially filled, so electrons can be
easily excited to nearby energy states. (b) A
conductor in which the valence band overlaps
a conduction band above it. (c) A typical
insulator. There is a forbidden band that has a
large energy gap between the filled valence
band and the conduction band. (d) A
semiconductor. The energy gap between the
filled valence band and the conduction band
is very small, so some electrons are excited to
the conduction band at normal temperatures,
leaving holes in the valence band.

Allowed energy bands

Separation of atoms

Energy

Level 2

Level 1

F I G U R E  3 8 - 1 4 Energy splitting of two energy levels
for six atoms as a function of the separation of the atoms.
When there are many atoms, each level splits into a near-
continuum of levels called a band.
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At the conduction band is empty. At ordinary temperatures, a few electrons
can be excited to states in that band, but most cannot be excited to states because the
energy gap is large compared with the energy an electron might obtain by thermal
excitation. Very few electrons can be thermally excited to the nearly empty conduc-
tion band, even at fairly high temperatures. When an electric field of ordinary mag-
nitude is established in the solid, electrons cannot be accelerated because there are
no empty energy states at nearby energies. We describe this by saying that there are
no free electrons. The small conductivity that is observed is due to the very few elec-
trons that are thermally excited into the nearly empty conduction band. When an
electric field applied to an insulator is sufficiently strong to cause an electron to be
excited across the energy gap to the empty band, dielectric breakdown occurs.

In some substances, the energy gap between the filled valence band and the
empty conduction band is very small, as shown in Figure 38-15d. At there
are no electrons in the conduction band and the material is an insulator. At ordi-
nary temperatures, however, there are an appreciable number of electrons in the
conduction band due to thermal excitation. Such a material is called an intrinsic
semiconductor. For typical intrinsic semiconductors, such as silicon and germa-
nium, the energy gap is only about In the presence of an electric field, the
electrons in the conduction band can be accelerated because there are empty states
nearby. Also, for each electron in the conduction band there is a vacancy, or hole,
in the nearly filled valence band. In the presence of an electric field, electrons in
this band can also be excited to a vacant energy level. This contributes to the elec-
tric current and is most easily described as the motion of a hole in the direction of
the field and opposite to the motion of the electrons. The hole thus acts like a pos-
itive charge. To visualize the conduction of holes, think of a two-lane, one-way
road that has one lane completely filled with parked cars and the other lane empty.
If a car moves out of the completely filled lane into the empty lane, it can move
ahead freely. As the other cars move up to occupy the vacated space, the vacated
space propagates backward in the direction opposite the motion of the cars. Both
the forward motion of the car in the nearly empty lane and the backward propa-
gation of the empty space contribute to a net forward propagation of the cars.

An interesting characteristic of semiconductors is that the resistivity of the sub-
stance decreases as the temperature increases, which is contrary to the case for nor-
mal conductors. The reason is that as the temperature increases, the number of free
electrons increases because there are more electrons in the conduction band. The
number of holes in the valence band also increases, of course. In semiconductors,
the effect of the increase in the number of charge carriers, both electrons and holes,
exceeds the effect of the increase in resistivity due to the increased scattering of the
electrons by the lattice ions due to thermal vibrations. Semiconductors therefore
have a negative temperature coefficient of resistivity.

38-6 SEMICONDUCTORS

The semiconducting property of intrinsic semiconductors makes them useful as a
basis for electronic circuit components whose resistivity can be controlled by
application of an external voltage or current. Most such solid-state devices, however,
such as the semiconductor diode and the transistor, make use of impurity
semiconductors, which are created through the controlled addition of certain
impurities to intrinsic semiconductors. This process is called doping. Figure 38-16a
is a schematic illustration of silicon doped with a small amount of arsenic so that
the arsenic atoms replace a few of the silicon atoms in the crystal lattice. The con-
duction band of pure silicon is virtually empty at ordinary temperatures, so pure
silicon is a poor conductor of electricity. However, arsenic has five valence elec-
trons rather than the four valence electrons of silicon. Four of these electrons take
part in bonds with the four neighboring silicon atoms, and the fifth electron is very

1 eV.

T ϭ 0,

T ϭ 0,

 Empty conduction
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Impurity
donor levels

Filled valence band

Si Si Si Si Si
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F I G U R E  3 8 - 1 6 (a) A two-dimensional
schematic illustration of silicon doped with
arsenic. Because arsenic has five valence
electrons, there is an extra, weakly bound
electron that is easily excited to the
conduction band, where it can contribute to
electrical conduction. (b) Band structure of an

semiconductor, such as silicon doped
with arsenic. The impurity atoms provide
filled energy levels that are just below the
conduction band. These levels donate
electrons to the conduction band.

n-type
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loosely bound to the atom. This extra electron occupies an energy level that is just
slightly below the conduction band in the solid, and it is easily excited into the con-
duction band, where it can contribute to electrical conduction.

The effect on the band structure of a silicon crystal achieved by doping it with
arsenic is shown in Figure 38-16b. The levels shown just below the conduction
band are due to the extra electrons of the arsenic atoms. These levels are called
donor levels because they donate electrons to the conduction band without leav-
ing holes in the valence band. Such a semiconductor is called an semi-
conductor because the major charge carriers are negatively charged electrons.
The conductivity of a doped semiconductor can be controlled by controlling the
amount of impurity added. The addition of just one part per million can increase
the conductivity by several orders of magnitude.

Another type of impurity semiconductor can be made by replacing a silicon
atom with a gallium atom, which has three valence electrons (Figure 38-17a). The
gallium atom accepts electrons from the valence band to complete its four covalent
bonds, thus creating a hole in the valence band. The effect on the band structure of
silicon achieved by doping it with gallium is shown in Figure 38-17b. The empty
levels shown just above the valence band are due to the holes from the ionized gal-
lium atoms. These levels are called acceptor levels because they accept electrons
from the filled valence band when those electrons are thermally excited to a higher
energy state. This creates holes in the valence band that are free to propagate in the
direction of an electric field. Such a semiconductor is called a p-type semiconductor
because the charge carriers are positively charged holes. The fact that conduction
is due to the motion of positively charged holes can be verified by the Hall effect.
(The Hall effect is discussed in Chapter 26.)

n-type

Synthetic crystal silicon is produced beginning
with a raw material containing silicon (for
instance, common beach sand), separating out
the silicon, and melting it. From a seed crystal,
the molten silicon grows into a cylindrical
crystal, such as the one shown here. The
crystals (typically about 1.3 m long) are
formed under highly controlled conditions to
ensure that they are flawless and the crystals
are then sliced into thousands of thin wafers
onto which the layers of an integrated circuit
are etched. (Museum of Modern Art.)

Try It YourselfExample 38-7 Number Density of Free Electrons in 
Arsenic-Doped Silicon

The number of free electrons in pure silicon is approximately at ordinary
temperatures. If one silicon atom out of every is replaced by an arsenic atom, how
many free electrons per cubic centimeter are there? (The density of silicon is and
its molar mass is )

PICTURE The number of silicon atoms per cubic centimeter, can be found from
Then, because each arsenic atom contributes one free electron, the number of

electrons contributed by the arsenic atoms is 10Ϫ6 nSi.
nSi ϭ rNA>M.

nSi,

28.1 g>mol.
2.33 g>cm3

106 atoms
1010 electrons>cm3

F I G U R E  3 8 - 1 7 (a) A two-dimensional schematic illustration of silicon doped with gallium.
Because gallium has only three valence electrons, there is a hole in one of its bonds. As electrons
move into the hole the hole moves about, contributing to the conduction of electrical current.
(b) Band structure of a semiconductor, such as silicon doped with gallium. The impurity
atoms provide empty energy levels just above the filled valence band that accept electrons from
the valence band.

p-type
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Steps Answers

1. Calculate the number of silicon atoms per cubic centimeter.

ϭ 4.99 ϫ 1022 atoms>cm3

ϭ
(2.33 g>cm3)(6.02 ϫ 1023 atoms>mol)

28.1 g>mol

nSi ϭ
rNA

M

2. Multiply by to obtain the number of arsenic atoms per
cubic centimeter, which equals the added number of free
electrons per cubic centimeter.

10Ϫ6 nAs ϭ 10Ϫ6nSi ϭ 4.99 ϫ 1016 atoms>cm3

CHECK As expected, the step-3 result is less than the number density of silicon atoms and
more than the number density of conduction electrons in pure silicon.

TAKING IT FURTHER Because silicon has so few free electrons per atom, the number den-
sity of conduction electrons is increased by a factor of approximately 5 million per cubic cen-
timeter by doping silicon with just one arsenic atom per million silicon atoms.

PRACTICE PROBLEM 38-3 How many free electrons are there per silicon atom in pure
silicon?

3. The number of free electrons per cubic centimeter is equal to the
number of arsenic atoms per cubic centimeter plus 
(the number of silicon atoms per cubic centimeter).

1 ϫ 10Ϫ10

 5 ϫ 1016 electrons>cm3ഠ

ϭ 4.99 ϫ 1016 cmϪ3 ϩ 1 ϫ 1010 cmϪ3

ne ϭ nAs ϩ 1 ϫ 10Ϫ10nSi

SOLVE
Cover the column to the right and try these on your own before looking at the answers.

38-7 SEMICONDUCTOR 
JUNCTIONS AND DEVICES

Semiconductor devices such as diodes and transistors make use of semi-
conductors and semiconductors joined together, as shown in Figure 38-18.
In practice, the two types of semiconductors are often incorporated into a single sil-
icon crystal doped with donor impurities on one side and acceptor impurities on
the other side. The region in which the semiconductor changes from a semi-
conductor to an semiconductor is called a junction.

When an semiconductor and a semiconductor are placed in con-
tact, the initially unequal concentrations of electrons and holes result in the diffu-
sion of electrons across the junction from the side to the side and holes from the

side to the side until equilibrium is established. The result of this diffusion is a
net transport of positive charge from the side to the side. Unlike the case when
two different metals are in contact, the electrons cannot travel very far from the
junction region because the semiconductor is not a particularly good conductor.
The diffusion of electrons and holes therefore creates a double layer of charge at
the junction similar to that on a parallel-plate capacitor. There is, thus, a potential
difference across the junction, which tends to inhibit further diffusion. In equi-
librium, the side which has a net positive charge will be at a higher potential than
the side which has a net negative charge. In the junction region, between the
charge layers, there will be very few charge carriers of either type, so the junction
region has a high resistance. Figure 38-19 shows the energy-level diagram for a 
junction. The junction region is also called the depletion region because it has been
depleted of charge carriers.
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*DIODES

In Figure 38-20, an external potential difference has been applied
across a junction by connecting a battery and a resistor to the
semiconductor. When the positive terminal of the battery is con-
nected to the side of the junction, as shown in Figure 38-20a, the
junction is said to be forward biased. Forward biasing lowers the
potential across the junction. The diffusion of electrons and holes is
thereby increased as they attempt to reestablish equilibrium, result-
ing in a current in the circuit.

If the positive terminal of the battery is connected to the side of
the junction, as shown in Figure 38-20b, the junction is said to be
reverse biased. Reverse biasing tends to increase the potential dif-
ference across the junction, thereby further inhibiting diffusion.
Figure 38-21 shows a plot of current versus voltage for a typical
semiconductor junction. Essentially, the junction conducts only in one
direction for applied voltages greater than the breakdown voltage.
A single-junction semiconductor device is called a diode.* Diodes
have many uses. One use is to convert alternating current into direct
current, a process called rectification.

Note that the current in Figure 38-21 suddenly increases in magni-
tude at extreme values of reverse bias. In such large electric fields,
electrons are stripped from their atomic bonds and accelerated across
the junction. These electrons, in turn, cause others to break loose. This effect is called
avalanche breakdown. Although such a breakdown can be disastrous in a circuit
where it is not intended, the fact that it occurs at a sharply defined voltage makes it
of use in a special voltage reference standard known as a Zener diode. Zener diodes
are also used to protect devices from excessively high voltages.

An interesting effect, one that we discuss only qualitatively, occurs if both the 
side and the side of a diode are so heavily doped that the donors on
the side provide so many electrons that the lower part of the conduction band is
practically filled, and the acceptors on the side accept so many electrons that the
upper part of the valence band is nearly empty. Figure 38-22a shows the energy-level

p
n

pn-junctionp
n

n

p

pn
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F I G U R E  3 8 - 2 1 Plot of current versus applied voltage
across a junction. Note the different scales on both axes for
the forward and reverse bias conditions.
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* The name diode originates from a vacuum tube device consisting of just two electrodes that also conducts electric cur-
rent in one direction only.
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F I G U R E  3 8 - 2 2 Electron energy levels
for a heavily doped tunnel diode.
(a) With no bias voltage, some electrons tunnel
in each direction. (b) With a small bias voltage,
the tunneling current is enhanced in one
direction, making a sizable contribution to the
net current. (c) With further increases in the
bias voltage, the tunneling current decreases
dramatically.
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I

VVA VB

F I G U R E  3 8 - 2 3 Current versus applied
(bias) voltage for a tunnel diode. For 
an increase in the bias voltage enhances
tunneling. For an increase in the
bias voltage inhibits tunneling. For 
the tunneling is negligible, and the diode
behaves like an ordinary diode.pn-junction
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F I G U R E  3 8 - 2 4 A
semiconductor as a solar cell. When light
strikes the region, electron-hole pairs
are created, resulting in a current through the
load resistance RL.

p-type

pn-junction

diagram for this situation. Because the depletion region is now so narrow, electrons
can easily penetrate the potential barrier across the junction and tunnel to the other
side. The flow of electrons through the barrier is called a tunneling current, and such
a heavily doped diode is called a tunnel diode.

At equilibrium where there is no bias, there is an equal tunneling current in each
direction. When a small bias voltage is applied across the junction, the energy-level
diagram is as shown in Figure 38-22b, and the tunneling of electrons from the side
to the side is increased, whereas the tunneling of electrons in the opposite direc-
tion is decreased. This tunneling current, in addition to the usual current due to dif-
fusion, results in a considerable net current. When the bias voltage is increased
slightly, the energy-level diagram is as shown in Figure 38-22c, and the tunneling
current is decreased. Although the diffusion current is increased, the net current is
decreased. At large bias voltages, the tunneling current is completely negligible,
and the total current increases with increasing bias voltage due to diffusion, as in an
ordinary diode. Figure 38-23 shows the current versus voltage curve for
a tunnel diode. Such diodes are used in electric circuits because of their very fast re-
sponse time. When operated near the peak in the current versus voltage curve, a
small change in bias voltage results in a large change in the current.

Another use for the semiconductor is the solar cell, which is illus-
trated schematically in Figure 38-24. When a photon of energy greater than the gap
energy ( in silicon) strikes the region, it can excite an electron from the
valence band into the conduction band, leaving a hole in the valence band. This re-
gion is already rich in holes. Some of the electrons created by the photons will
recombine with holes, but some will migrate to the junction. From there, they are
accelerated into the region by the electric field between the double layer of
charge. This creates an excess negative charge in the region and an excess
positive charge in the region. The result is a potential difference between the
two regions, which in practice is approximately If a load resistance is con-
nected across the two regions, a charge flows through the resistance. Some of the
incident light energy is thus converted into electrical energy. The current in the re-
sistor is proportional to the rate of arrival of incident photons, which is in turn pro-
portional to the intensity of the incident light.

There are many other applications of semiconductors with junctions. Particle
detectors, called surface-barrier detectors, consist of a semiconductor
that has a large reverse bias so that there is ordinarily no current. When a high-en-
ergy particle, such as an electron, passes through the semiconductor, it creates
many electron–hole pairs as it loses energy. The resulting current pulse signals the
passage of the particle. Light-emitting diodes (LEDs) are semiconduc-
tors that have large forward biases that produce large excess concentrations of elec-
trons on the sides and holes on the sides of the junctions. Under these condi-
tions, an LED emits light as the electrons and holes recombine. This is essentially
the reverse of the process that occurs in a solar cell, in which electron–hole pairs
are created by the absorption of light. LEDs are commonly used as warning indi-
cators and as sources of infrared light beams.

*TRANSISTORS

The transistor, a semiconducting device that is used to produce a desired output
signal in response to an input signal, was invented in 1948 by William Shockley,
John Bardeen, and Walter Brattain and has revolutionized the electronics industry
and our everyday world. A simple bipolar junction transistor* consists of three
distinct semiconductor regions called the emitter, the base, and the collector. The
base is a very thin region of one type of semiconductor sandwiched between two
regions of the opposite type. The emitter semiconductor is much more heavily

np

pn-junction

pn-junction
pn

0.6 V.
p-type

n-type
n-type

p-type1.1 eV

pn-junction

pn-junction

p
n

A light-emitting diode (LED). (© C. Falco/Photo
Researchers.)

* Besides the bipolar junction transistor, there are other categories of transistors, notably, the field–effect transistor.
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F I G U R E  3 8 - 2 7 A transistor biased
for normal operation. Holes from the emitter
can easily diffuse across the base, which
is only tens of nanometers thick. Most of the
holes flow to the collector, producing the
current Ic.

pnp

doped than either the base or the collector. In an transistor, the emitter and col-
lector are semiconductors and the base is a semiconductor; in a 
transistor, the base is an semiconductor and the emitter and collector are

semiconductors.
Figure 38-25 and Figure 38-26 show, respectively, a transistor and an 

transistor, along with the symbols used to represent each transistor in circuit dia-
grams. We see that either transistor consists of two junctions. We will discuss the
operation of a transistor. The operation of an transistor is similar.

In the normal operation of a transistor, the emitter-base junction is forward
biased, and the base-collector junction is reverse biased, as shown in Figure 38-27.
The heavily doped emitter emits holes that flow toward the emitter-base junc-
tion. This flow constitutes the emitter current Because the base is very thin, most
of the holes flow across the base into the collector. This flow in the collector consti-
tutes a current However, some of the holes recombine in the base producing a pos-
itive charge that inhibits the further flow of charge. To prevent this, some of the holes
that do not reach the collector are drawn off the base as a base current in a wire
connected to the base. In Figure 38-27, therefore, is almost but not quite equal to

and is much smaller than either or It is customary to express as

38-31

where is called the current gain of the transistor. Transistors can be designed to
have values of as low as ten or as high as several hundred.

Figure 38-28 shows a simple transistor used as an amplifier. A small, time-
varying input voltage is connected in series with a constant bias voltage 
The base current is then the sum of a steady current produced by the bias voltage

and a time-varying current due to the signal voltage Because may at
any instant be either positive or negative, the bias voltage must be large enough
to ensure that there is always a forward bias on the emitter-base junction. The col-
lector current will consist of two parts: a constant direct current and a time-
varyng current We thus have a current amplifier in which the time-varying
output current is multiplied by the input current In such an amplifier, the
steady currents and although essential to the operation of the transistor, are
usually not of interest. The input signal voltage is related to the base current by
Ohm’s law:
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F I G U R E  3 8 - 2 5 A transistor. (a) The heavily
doped emitter emits holes that pass through the thin base
to the collector. (b) Symbol for a transistor in a
circuit. The arrow points in the direction of the
conventional current, which is the same as that of the
emitted holes.
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F I G U R E  3 8 - 2 6 An transistor. (a) The
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through the thin base to the collector. (b) Symbol for
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the conventional current, which is opposite the
direction of the emitted electrons.
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where is the internal resistance of that part of the transistor between the base and
emitter. Similarly, the collector current produces a time-varying voltage across
the output or load resistance given by

38-33

Using Equation 38-31 and Equation 38-32, we have

38-34

The output voltage is thus related to the input voltage by

38-35

The ratio of the output voltage to the input voltage is the voltage gain of the amplifier:

38-36

A typical amplifier (for example, in a tape player) has several transistors, similar
to the one shown in Figure 38-28, connected in series so that the output of one
transistor serves as the input for the next. Thus, the very small voltage fluctuations
produced by the motion of the magnetic tape past the pickup heads controls the
large amounts of power required to drive the loudspeakers. The power delivered
to the speakers is supplied by the dc sources connected to each transistor.

The technology of semiconductors extends well beyond individual transistors
and diodes. Many of the electronic devices we use every day, such as laptop
computers and the processors that govern the operation of vehicles and appli-
ances, rely on large-scale integration of many transistors and other circuit com-
ponents on a single chip. Large-scale integration combined with advanced
concepts in semiconductor theory has created remarkable new instruments for
scientific research.

38-8 SUPERCONDUCTIVITY

There are some substances for which the resistivity suddenly drops to zero below
a certain temperature which is called the critical temperature. This amazing
phenomenon, called superconductivity, was discovered in 1911 by the Dutch
physicist H. Kamerlingh Onnes, who developed a technique for liquefying
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helium (boiling point equal to ) and used his technique to explore the prop-
erties of substances at temperatures in that range. Figure 38-29 shows Onnes’s plot
of the resistance of mercury versus temperature. The critical temperature for mer-
cury is approximately the same as the boiling point of helium, which is 
Critical temperatures for other superconducting elements range from less than

for hafnium and iridium to for niobium. The temperature range for su-
perconductors is much higher for a number of metallic compounds. For example,
the superconducting alloy discovered in 1973, has a critical temperature of

which was the highest known until 1986, when the discoveries of J. Georg
Bednorz and K. Alexander Müller launched the era of high-temperature supercon-
ductors, now defined as materials that exhibit superconductivity at temperatures
above (the temperature at which nitrogen boils). The highest temperature at
which superconductivity has been demonstrated, using thallium-doped

is at atmospheric pressure. At extremely high pres-
sures, some materials exhibit superconductivity at temperatures as high as 

The resistivity of a superconductor is zero. There can be a current in a super-
conductor even when there is no emf in the superconducting circuit. Indeed, in su-
perconducting rings in which there was no electric field, steady currents have been
observed to persist for years without apparent loss. Despite the cost and inconve-
nience of refrigeration using expensive liquid helium, many superconducting
magnets have been built using superconducting materials, because such magnets
require no power expenditure to maintain the large current needed to produce a
large magnetic field.

164 K.
138 KHgBa2Ca2Cu3O8 ϩ delta,

77 K

25 K,
Nb3Ge,

9.2 K0.1 K

4.2 K.

4.2 K

The wires for the magnetic field of a magnetic
resonance imaging (MRI) machine carry large
currents. To keep the wires from overheating,
they are maintained at superconducting
temperatures. To accomplish this, they are
immersed in liquid helium. (Corbis.)

10 –5

4.00 4.10 4.20 4.30 4.40

Ω

0.15

0.125

0.10

0.075

0.05

0.025

0.00

R, Ω

T, K

F I G U R E  3 8 - 2 9 Plot by H. Kamerlingh
Onnes of the resistance of mercury versus
temperature, showing the sudden decrease at
the critical temperature of T ϭ 4.2 K.



Superconductivity S E C T I O N  3 8 - 8 | 1307

The discovery of high-temperature superconductors has revolutionized the
study of superconductivity because relatively inexpensive liquid nitrogen, which
boils at can be used for a coolant. However, many problems, such as brittle-
ness and the toxicity of the materials, make these new superconductors difficult to
use. The search continues for new materials that will be superconductors at even
higher temperatures.

THE BCS THEORY

It had been recognized for some time that low temperature superconductivity is
due to a collective action of the conducting electrons. In 1957, John Bardeen, Leon
Cooper, and Robert Schrieffer published a successful theory of low temperature
superconductivity now known by the initials of the inventors as the BCS theory.
According to this theory, the electrons in a superconductor are coupled in pairs at
low temperatures. The coupling comes about because of the interaction between
electrons and the crystal lattice. One electron interacts with the lattice and perturbs
it. The perturbed lattice interacts with another electron in such a way that there is
an attraction between the two electrons that at low temperatures can exceed the
Coulomb repulsion between them. The electrons form a bound state called a
Cooper pair. The electrons in a Cooper pair have equal and opposite spins, so they
form a system with zero spin. Each Cooper pair acts as a single particle with zero
spin, in other words, as a boson. Bosons do not obey the exclusion principle. Any
number of Cooper pairs may be in the same quantum state with the same energy.
In the ground state of a superconductor (at ), all the conduction electrons are
in Cooper pairs and all the Cooper pairs are in the same energy state. In the su-
perconducting state, the Cooper pairs are correlated so that they act collectively.
An electric current can be produced in a superconductor because all of the elec-
trons in this collective state move together. But energy cannot be dissipated by in-
dividual collisions of electron and lattice ions unless the temperature is high
enough to break the binding of the Cooper pairs. The required energy is called the
superconducting energy gap In the BCS theory, this energy at zero temperature is
related to the critical temperature by

38-37

The energy gap can be determined by measuring the current across a junction
between a normal metal and a superconductor as a function of voltage. Consider
two metals separated by a layer of insulating material, such as aluminum oxide,
that is only a few nanometers thick. The insulating material between the metals
forms a barrier that prevents most electrons from traversing the junction. However,
waves can tunnel through a barrier if the barrier is not too thick, even if the energy
of the wave is less than that of the barrier.

When the materials on either side of the gap are normal nonsuperconducting
metals, the current resulting from the tunneling of electrons through the insulat-
ing layer obeys Ohm’s law for low applied voltages (Figure 38-30a). When one of
the metals is a normal metal and the other is a superconductor, there is no current
(at absolute zero) unless the applied voltage is greater than a critical voltage

where is the superconductor energy gap. Figure 38-30b shows the
plot of current versus voltage for this situation. The current escalates rapidly when
the energy absorbed by a Cooper pair traversing the barrier approaches

the minimum energy needed to break up the pair. (The small current
visible in Figure 38-30b before the critical voltage is reached is present because at
any temperature above absolute zero some of the electrons in the superconductor
are thermally excited above the energy gap and are therefore not paired.) At volt-
ages slightly above the current versus voltage curve becomes that for a normal
metal. The superconducting energy gap can thus be measured by measuring the
average voltage for the transition region.
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EgVc ϭ Eg>(2e), V

Eg ϭ 7
2 kTc

Eg.

T ϭ 0

77 K,

I

I

V

V

Vc

(a)

(b)

F I G U R E  3 8 - 3 0 Tunneling current
versus voltage for a junction of two metals
separated by a thin oxide layer. (a) When both
metals are normal metals, the current is
proportional to the voltage, as predicted by
Ohm’s law. (b) When one metal is a normal
metal and another metal is a superconductor,
the current is approximately zero until the
applied voltage approaches the critical
voltage Vc ϭ Eg>(2e).V



Note that the energy gap for a typical superconductor is much
smaller than the energy gap for a typical semiconductor, which is of
the order of As the temperature is increased from some
of the Cooper pairs are broken. Then there are fewer pairs available
for each pair to interact with, and the energy gap is reduced until at

the energy gap is zero (Figure 38-31).

THE JOSEPHSON EFFECT

When two superconductors are separated by a thin nonsupercon-
ducting barrier (for example, a layer of aluminum oxide a few
nanometers thick), the junction is called a Josephson junction,
based on the prediction in 1962 by Brian Josephson that Cooper
pairs could tunnel across such a junction from one superconductor
to the other with no resistance. The tunneling of Cooper pairs con-
stitutes a current, which does not require a voltage to be applied
across the junction. The current depends on the difference in phase
of the wave functions that describe the Cooper pairs. Let be the
phase constant for the wave function of a Cooper pair in one su-
perconductor. All the Cooper pairs in a superconductor act coher-
ently and have the same phase constant. If is the phase constant
for the Cooper pairs in the second superconductor, the current
across the junction is given by

38-38

where is the maximum current, which depends on the thickness of the barrier.
This result has been observed experimentally and is known as the dc Josephson
effect.

Josephson also predicted that if a dc voltage were applied across a Josephson
junction, there would be a current that alternates with frequency given by

38-39

This result, known as the ac Josephson effect, has been observed experimentally,
and careful measurement of the frequency allows a precise determination of the
ratio Because frequency can be measured very accurately, the ac Josephson
effect is also used to establish precise voltage standards. The inverse effect, in
which the application of an alternating voltage across a Josephson junction results
in a dc current, has also been observed.

e>h.
f ϭ

2e
h
V

f
V

Imax

I ϭ Imax sin(f2 Ϫ f1)

f2

f1

T ϭ Tc

T ϭ 0,1 eV.
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F I G U R E  3 8 - 3 1 Ratio of the energy gap at
temperature to that at temperature as a function of
the relative temperature The solid curve is that
predicted by the BCS theory.

T>Tc.
T ϭ 0T

Example 38-8 Superconducting Energy Gap for Mercury

Calculate the superconducting energy gap for mercury predicted by the BCS theory.

PICTURE The energy gap is related to the critical temperature by (Equation 38-37).

SOLVE

Eg ϭ 3.5 kTc

(Tc ϭ 4.2 K)

1. The BCS prediction for the energy gap is Eg ϭ 3.5kTc

2. Substitute Tc ϭ 4.2 K:

 1.3 ϫ 10Ϫ3 eVϭ

ϭ 3.5(1.38 ϫ 10Ϫ23 J>K)(4.2 K) a 1 ev
1.6 ϫ 10Ϫ19 J

bEg ϭ 3.5kTc
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Example 38-9 Frequency of Josephson Current

Using and calculate the frequency of the Josephson
current if the applied voltage is 

PICTURE The frequency is related to the applied voltage by (Equation 38-39).

SOLVE

hf ϭ 2eVVf

1.000 mV.
h ϭ 6.626 ϫ 10Ϫ34 J # s,e ϭ 1.602 ϫ 10Ϫ19 C

Substitute the given values into Equation 38-39 to calculate f:

483.5 MHzϭ 4.835 ϫ 108 Hz ϭ

f ϭ
2e
h
V ϭ

2(1.602 ϫ 10Ϫ19 C)
6.626 ϫ 10Ϫ34 J # s (1.000 ϫ 10Ϫ6 V)

38-9 THE FERMI–DIRAC DISTRIBUTION

The classical Maxwell–Boltzmann distribution (Equation 17-38) gives the number
of molecules that have energy in the range between and The num-

ber is equal to the product of where is the density of states
(number of energy states in the range ) and the Boltzmann factor which
is the probability of a state being occupied. The distribution function for free elec-
trons in a metal is called the Fermi–Dirac distribution. The Fermi–Dirac distribu-
tion can be written in the same form as the Maxwell–Boltzmann distribution,
where the density of states calculated from quantum theory and the Boltzmann
factor is replaced by the Fermi factor. Let be the number of electrons that
have energies between and This number is writtenE ϩ dE.E

n(E) dE

eϪE>(kT),dE
g(E)g(E) dEdN

E ϩ dE.EEdN

38-40

ENERGY DISTRIBUTION FUNCTION

n(E)dE ϭ f(E)g(E)dE

38-41

DENSITY OF STATES

g(E) ϭ
822pm3>2

e V

h3 E1>2

where is the number of states that have energies between and 
and is the probability of a state being occupied, which is the Fermi factor. The
density of states in three dimensions is somewhat challenging to calculate, so we
just give the result. For electrons in a metal of volume the density of states isV,

f(E)
E ϩ dEEg(E) dE

As in the classical Maxwell–Boltzmann distribution, the density of states is pro-
portional to 

At the Fermi factor is given by Equation 38-24:

The integral of over all energies gives the total number of electrons We
can derive the equation

EF ϭ
h2

8me

a 3N
pV
b 2>3

N.n(E) dE

f(E) ϭ e1 E Ͻ EF

0 E Ͼ EF

T ϭ 0,
E1>2.
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38-43

DENSITY OF STATES IN TERMS OF E F

g(E) ϭ
822pm3>2

e V

h3 E1>2 ϭ
3
2
NEϪ3>2

F E1>2

(Equation 38-22a) for the Fermi energy at by integrating from 
to We obtain

Note that at is zero for Solving for gives the Fermi energy at

38-42

which is Equation 38-22a. In terms of the Fermi energy, the density of states
(Equation 38-41) is

EF ϭ
h2

8me

a 3N
pV
b 2>3T ϭ 0:

EFE Ͼ EF.T ϭ 0, n(E)

ϭ Ύ
EF

0

822pm3>2
e V

h3 E1>2 dE ϩ 0 ϭ
1622pm3>2

e V

3h3 E3>2
F

N ϭ Ύ
ϱ

0
n(E)dE ϭ Ύ

EF

0
n(E)dE ϩ Ύ

ϱ

EF

n(E)dE

E ϭ ϱ.
E ϭ 0n(E) dET ϭ 0

which is obtained by solving Equation 38-42 for and then substituting for 
in Equation 38-41. The average energy at is calculated from

38-44

where is the total number of electrons. Substituting for from

Equation 38-43 and then evaluating the integral in Equation 38-44, we obtain
Equation 38-23:

38-45

AVERAGE ENERGY AT T ϭ 0

At the Fermi factor is more complicated. It can be shown to be

38-46

FERMI FACTOR

We can see from this equation that for greater than becomes very
large as approaches zero, so at the Fermi factor is zero for On the
other hand, for less than approaches 0 as approaches zero, so at

for Thus, the Fermi factor given by Equation 38-46 holds
for all temperatures. Note also that for any nonzero value of at E ϭ EF.T, f(E) ϭ 1

2

E Ͻ EF.T ϭ 0, f(E) ϭ 1
TEF , e(EϪEF)>(kT)E

E Ͼ EF.T ϭ 0,T
EF , e(EϪEF)>(kT)E

f(E) ϭ
1

e(EϪEF)>(kT) ϩ 1

T Ͼ 0,

Eav ϭ 3
5EF

g(E)N ϭ Ύ
EF

0
g(E)dE

Eav ϭ
Ύ
EF

0
Eg(E)dE

Ύ
EF

0
g(E)dE

ϭ
1
N Ύ

EF

0
Eg(E)dE

T ϭ 0
meme ,
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The complete Fermi-Dirac distribution function is thus

38-47

FERMI–DIRAC DISTRIBUTION

We can see that for those few electrons that have energies much greater than the
Fermi energy, the Fermi factor approaches 
which is proportional to Thus, the high-energy tail of the Fermi–Dirac energy
distribution decreases with increasing as just like the classical Maxwell–
Boltzmann energy distribution. The reason for this is that in this high-energy region
there are many unoccupied energy states and few electrons, so the exclusion princi-
ple is not important. Thus, the Fermi–Dirac distribution approaches the classical
Maxwell–Boltzmann distribution in the high-energy limit. This result has practical
importance because it applies to the conduction electrons in semiconductors.

eϪE>(kT),E
eϪE>(kT).

1>e(EϪEF)>(kT) ϭ e(EFϪE)>(kT) ϭ eEF>(kT)eϪE>(kT),

n(E)dE ϭ g(E)f(E)dE ϭ
822pm3>2

e V

h3 E1>2 1
e(EϪEF)>(kT) ϩ 1

dE

Example 38-10 Fermi Factor for Copper at 300 K

At what energy is the Fermi factor equal to 0.100 for copper at 

PICTURE We set in Equation 38-46, using and from
Table 38-1, and solve for 

SOLVE

E.
EF ϭ 7.03 eVT ϭ 300 Kf(E) ϭ 0.100

T ϭ 300 K?

1. Solve Equation 38-46 for e(EϪEF)>(kT):

so

e(EϪEF)>(kT) ϭ
1
f(E)

Ϫ 1

f(E) ϭ
1

e(EϪEF)>(kT) ϩ 1

2. Take the logarithm of both sides:
E Ϫ EF

kT
ϭ ln c 1

f(E)
Ϫ 1 d

3. Solve for For use the value for 
at listed in Table 38-1:T ϭ 0 K

EFEF,E.

 7.09 eVϭ

ϭ 7.03 eV ϩ ln c 1
0.100

Ϫ 1 d (8.62 ϫ 10Ϫ5 eV>K)(300 K)

E ϭ EF ϩ c 1
f(E)

Ϫ 1 dkT

CHECK As expected, the energy is slightly above the Fermi energy when the Fermi factor is
equal to 0.100.

Example 38-11 Probability of a Higher Energy State Being Occupied

Find the probability that an energy state in copper above the Fermi energy is occu-
pied at 

PICTURE The probability is the Fermi factor given in Equation 38-46, with and
E ϭ 7.13 eV.

EF ϭ 7.03 eV

T ϭ 300 K.
0.100 eV
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1. The probability of an energy state being occupied equals the
Fermi factor:

P ϭ f(E) ϭ
1

e(EϪEF)>(kT) ϩ 1

2. Calculate the exponent in the Fermi factor (exponents are
always dimensionless):

E Ϫ EF

kT
ϭ

7.13 eV Ϫ 7.03 eV
(8.62 ϫ 10Ϫ5 eV>K)(300 K)

ϭ 3.87

3. Use this result to calculate the Fermi factor:

 0.020ϭ
1

48 ϩ 1
ϭ

f(E) ϭ
1

e(EϪEF)>(kT) ϩ 1
ϭ

1
e3.87 ϩ 1

CHECK The probability that an energy state above the Fermi energy is occupied is less than
one-half. As expected, the step 4 result less than one-half.

TAKING IT FURTHER The probability of an electron having an energy above the
Fermi energy at is only about 2 percent.300 K

0.100 eV

Example 38-12 Probability of a Lower Energy State Being Occupied

Steps Answers

1. Write the Fermi factor: f(E) ϭ
1

e(EϪEF)>(kT) ϩ 1

2. Calculate the exponent in the Fermi factor:
E Ϫ EF

kT
ϭ

6.93 eV Ϫ 7.03 eV
(8.62 ϫ 10Ϫ5 eV>K)(300 K)

ϭ Ϫ3.87

CHECK As expected, the step-3 result is greater than one-half.

TAKING IT FURTHER The probability of an electron having an energy of below the
Fermi energy at is approximately 98 percent.

PRACTICE PROBLEM 38-4 What is the probability of an energy state below the
Fermi energy being unoccupied at 300 K?

0.10 eV

300 K
0.10 eV

3. Use your result from step 2 to calculate the Fermi factor:

0.98ϭ
1

0.021 ϩ 1
ϭ

f(E) ϭ
1

e(EϪEF)>(kT) ϩ 1
ϭ

1
e3.87 ϩ 1

Try It Yourself

SOLVE

Find the probability that an energy state in copper below the Fermi energy is
occupied at 

PICTURE The probability is the Fermi factor given in Equation 38-46, with and

SOLVE
Cover the column to the right and try these on your own before looking at the answers.

E ϭ 6.93 eV.
EF ϭ 7.03 eV

T ϭ 300 K.
0.10 eV


