COMPLEMENTOS DE MATEMATICA 3 (F) - Primer cuatrimestre de 2003

Práctica 7 - Espacios vectoriales con producto interno

Ejercicio 1. Determinar si las siguientes funciones son o no productos internos. En caso afirmativo encontrar su matriz en la buse canónica del espacio correspondiente.
i) $\Phi: \mathbb{R}^{2} \times \mathbb{R}^{2} \rightarrow \mathbb{R}$
$\Phi(x, y)=2 x_{1} y_{1}+3 x_{2} y_{1}-x_{2} y_{2}+3 x_{1} y_{2}$
ii) $\Phi: \mathbb{R}^{2} \times \mathbb{R}^{2} \rightarrow \mathbb{R}$
$\Phi(x, y)=x_{1} y_{1}+x_{2} y_{1}+2 x_{2} y_{2}-3 x_{1} y_{2}$
iii) $\Phi: K^{2} \times K^{2} \rightarrow K$
$\Phi(x, y)=2 x_{1} y_{1}+x_{2} y_{2}-x_{1} y_{2}-x_{2} y_{1}$, con $K=\mathbb{R}$ y $K=\mathbb{C}$
iv) $\Phi: \mathbb{d}^{2} \times \mathbf{C}^{2} \rightarrow \mathbf{C}$
$\Phi(x, y)=2 x_{1} \bar{y}_{1}+x_{2} \bar{y}_{2}-x_{1} \bar{y}_{2}-x_{2} \bar{y}_{1}$
v) $\Phi: \mathbb{C}^{2} \times \mathbb{C}^{2} \rightarrow \mathbf{C}$
$\Phi(x, y)=2 x_{1} \bar{y}_{1}+(1+i) x_{1} \bar{y}_{2}+(1+i) x_{2} \bar{y}_{1}+3 x_{2} \bar{y}_{2}$
vi) $\Phi: \mathbb{C}^{2} \times \mathbb{C}^{2} \rightarrow \mathbb{C}$
$\Phi(x, y)=x_{1} \bar{y}_{1}-i x_{1} \bar{y}_{2}+i x_{2} \bar{y}_{1}+2 x_{2} \bar{y}_{2}$
vii) $\Phi: K^{3} \times K^{-3} \rightarrow K$
$\Phi(x, y)=2 x_{1} \bar{y}_{1}+x_{3} \bar{y}_{3}-x_{1} \bar{y}_{3}-x_{3} \bar{y}_{1}$, con $K=\mathbb{R}$ y $K=\mathbf{C}$
viii) $\Phi: K^{3} \times K^{3} \rightarrow K$
$\Phi(x, y)=3 x_{1} \bar{y}_{1}+x_{2} \bar{y}_{1}+2 x_{2} \bar{y}_{2}+x_{1} \bar{y}_{2}+x_{3} \bar{y}_{3}$, con $K=\mathbb{R}$ y $K=\mathbf{C}$

Ejercicio 2.

i) Sca $\Phi: \mathbb{R}^{2} \times \mathbb{R}^{2} \rightarrow \mathbb{R}$ definida por

$$
\Phi(x, y)=x_{1} y_{1}-2 x_{1} y_{2}-2 x_{2} y_{1}+6 x_{2} y_{2}
$$

\checkmark a) Probar que Φ es un producto interno.
\checkmark b) Encontrar una base de \mathbb{R}^{2} que sea ortonormal para Φ.
\ii) Encontrar una base de \mathbb{C}^{2} que sea ortonormal para el producto interno definido en el Ejercicio 1. vi)
Ejercicio 3_{f} "En cada uno de los siguientes casos, ballar un producto interno en V para el cual la base B resulte ortonormal.
i) $V=\mathbb{R}^{2}$ y $B=\{(1,1),(2,-1)\}$
ii) $V=\mathbb{C}^{2}$ y $B=\{(1, i),(-1, i)\}$
iii) $V=\mathbb{R}^{3}$ y $B=\{(1,-1,1),(1,1,0),(0,1,1)\}$
iv) $V=\mathbb{C}^{3}$ y $B=\{(1, i, 1),(0,0,1),(0,1, i)\}$
(Ejercicio 4. Determinar para qué valores de a y $b \mathrm{cn} \mathbb{R}$ es

$$
\Phi(x, y)=a x_{1} y_{1}+b x_{1} y_{2}+b x_{2} y_{1}+b x_{2} y_{2}+(1+b) x_{3} y_{3}
$$

un producto interno en \mathbb{R}^{3}.

Ejercicio 5. Probar que las siguientes funciones definen productos internos sobre los espacios vectoriales considerados:
i) $\langle\rangle:, K^{n \times n} \times K^{n \times n} \rightarrow K,\langle A, B\rangle=\operatorname{tr}\left(A B^{*}\right)$, con $K=\mathbb{R}$ y $K=\mathbf{C}$
ii) $\langle\rangle:, C[0,1] \times C[0,1] \rightarrow \mathbb{R},\langle f, g\rangle=\int_{0}^{1} f(x) g(x) d x$
iii) $\langle\rangle:, K^{n} \times K^{n} \rightarrow K,\langle x, y\rangle=\bar{y} Q^{*} Q x^{t}$
donde $Q \in K^{n \times n}$ es una matriz inversible, con $K=\mathbb{R}$ y $K=\mathbb{C}$

Ejercicio 6. Restringir el producto interno del item ii) del cjercicio anterior a $\mathbb{R}_{n}[X]$ y calcular su matriz en la basc $B=\left\{1, X, \ldots, X^{n}\right\}$.

Ejercicio 7. Hallar el complemento ortogonal de los siguientes subespacios de V :
i i) $V=\mathbb{R}^{3}, \quad S_{1}=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3} / 2 x_{1}-x_{2}=0\right\}$
para el producto interno canónico.
ii) $V=\mathbb{R}^{3}, \quad S_{2}=<(1,2,1)>$

- a) Para el producto interno canónico.
b) Para el producto interno definido por

$$
\langle x, y\rangle=x_{1} y_{1}+2 x_{2} y_{2}+x_{3} y_{3}-x_{1} y_{2}-x_{2} y_{1}
$$

iii) $V=\mathbf{C}^{3}, \quad S_{3}=<(i, 1,1),(-1,0, i)>$ para el producto interno canónico
iv) $V=\mathbb{C}^{4}, \quad S_{4}=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \mathbb{C}^{4} /\left\{\begin{array}{l}x_{1}+2 i x_{2}-x_{3}+(1+i) x_{4}=0 \\ x_{2}+(2-i) x_{3}+x_{4}=0\end{array}\right\}\right.$ para el producto interno $\langle x, y\rangle=x_{1} \bar{y}_{1}+2 x_{2} \bar{y}_{2}+x_{3} \bar{y}_{3}+3 x_{4} \bar{y}_{4}$.
v) $V=\mathbb{R}^{4}, \quad S_{5}=<(1,1,0,-1),(-1,1,1,0),(2,-1,1,1)>$ para el producto interno canónico.

Ejercicio 8.

i) Hallar bases ortonormales para los subespacios del ejercicio anterior para cada uno de los productos internos considerados.
ii) Definir explícitamente las proyecciones ortogonales sobre cada uno de dichos subespacios.
iii) Hallar el punto de S_{5} más cercano a ($0,1,1,0$). Calcular la distancia de ($0,1,1,0$) a S_{5}.

Ejercicio 9.

i) Se considera $\mathbb{C}^{3 \times 3}$ con el producto interno $\langle A, B\rangle=\operatorname{tr}\left(A B^{*}\right)$. Hallar el complemento ortogonal del subespacio de las matrices diagonales.
ii) Se considera $\mathbb{R}_{3}[X]$ con el producto interno $\langle f, g\rangle=\int_{-1}^{1} f(x) g(x) d x$. Aplicar el proceso de GramSchmidt a la base $\left\{1, X, X^{2}, X^{3}\right\}$. Hallar el complemento ortogonal del subespacio $\left.S=<1\right\rangle$.
iii) Se considera $C[-1,1]$ con el producto interno $\langle f, g\rangle=\int_{-1}^{1} f(x) g(x) d x$. Hallar el polinomio de grado menor o igual que 3 más próximo a la función $f(x)=\operatorname{sen}(\pi x)$.
Sugerencia: Observar que basta considerar el subespacio $S=<1, x, x^{2}, x^{3}, \operatorname{sen}(\pi x)>$.
iv) Sc considera $C[0, \pi]$ con el producto interno $\langle f, g\rangle=\int_{0}^{\pi} f(t) g(t) d t$.
a) Aplicar el proceso de Gram-Schmidt a la base $B=\{1, \cos t$, sen $t\}$.
b) Sea S el subespacio de $C[0, \pi]$ generado por B. Hallar el elemento de S más próximo a la función $f(x)=x$.

Ejercicio 10. Calcular f^{*} para cada una de las transformaciones lincales siguientes:
i) $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, \quad f\left(x_{1}, x_{2}\right)=\left(3 x_{1}+x_{2},-x_{1}+x_{2}\right)$
ii) $f: \mathbb{C}^{3} \rightarrow \mathbb{C}^{3}, \quad f\left(x_{1}, x_{2}, x_{3}\right)=\left(2 x_{1}+(1-i) x_{2}, x_{2}+(3+2 i) x_{3}, x_{1}+i x_{2}+x_{3}\right)$
iii) $B=\{(1,2,-1),(1,0,0),(0,1,1)\}, \quad f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3} \mathbf{y}$

$$
|f|_{B}=\left(\begin{array}{ccc}
1 & 0 & 1 \\
2 & 0 & -1 \\
0 & 1 & 0
\end{array}\right)
$$

iv) $f: \mathbb{R}_{2}[X] \rightarrow \mathbb{R}_{2}[X], \quad f(p)=p^{\prime} \quad\left(\right.$ donde $\left.\langle p, q\rangle=\int_{0}^{1} p(x) q(x) d x\right)$.
v) $P \in \mathbf{C}^{n \times n}$ inversible, $f: \mathbb{C}^{n \times n} \rightarrow \mathbf{C}^{n \times n}, f(A)=P^{-1} A P \quad$ (donde $\langle A, B\rangle=\operatorname{tr}\left(A B^{*}\right)$).
vi) $\mu_{f}: \mathbb{R}[X] \rightarrow \mathbb{R}[X], \mu_{f}(p)=f p$ donde $f \in \mathbb{R}[X] \dot{y}\langle p, q\rangle=\int_{0}^{1} p(x) q(x) d x$

Ejercicio 11. Sea $(V,\langle\rangle$,$) un espacio vectorial con producto interno de dimensión finita y sca f: V \rightarrow V$ uria tranformación lineal. Probar que $\operatorname{Im}\left(f^{*}\right)=(\mathrm{Nu}(f))^{\perp}$.

Ejercicio 12. Sea $(V,\langle\rangle$,$) un espacio vectorial con prodicto interno de dimensión finita y S$ un subespacio de V : Probar que la proyección ortogonal $P: V \rightarrow V$ sobre S es autoadjunta. Calcular sus autovalores:

Ejercicio 13.

i) En cada uno de los siguientes casos, encontrar una matriz $O \in \mathbb{R}^{n \times n}$ ortogonal tal que $O A O^{t}$ sea diagonal:

$$
A=\left(\begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\right) \quad A=\left(\begin{array}{cc}
1 & 3 \\
3 & -1
\end{array}\right) \quad A=\left(\begin{array}{ccc}
5 & 0 & -2 \\
0 & 7 & -2 \\
-2 & -2 & 6
\end{array}\right)
$$

ii) En cada uno de los siguientes casos, encontrar una matriz $U \in \mathbf{C}^{n \times n}$ unitaria tal que $U A U^{*}$ sea diagorial:

$$
A=\left(\begin{array}{cccc}
4 & 1 & i & 0 \\
1 & 3 & 2 i & 1 \\
-i & -2 i & 3 & i \\
0 & 1 & -i & 2
\end{array}\right) \quad A=\left(\begin{array}{cccc}
2 & -1 & -i & 0 \\
-1 & 2 & -i & 0 \\
i & i & 2 & 0 \\
0 & 0 & 0 & 3
\end{array}\right)
$$

Ejercicio 14. Hallar la matriz en la base canónica dè làs siguientes transformaciones ortogonales:
i) $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$, rotación dc ángulo $\frac{\pi}{3}$.
ii) $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$, simetría respecto de la recta de ecuiación $x_{1}-x_{2}=0$
iii) $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$, simetría respecto del plano de ecuación $x_{1}+x_{2}-x_{3}=0$
iv) $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$, rotación dc ángulo $\frac{\pi}{4} \mathrm{y}$ cjc $\langle(1, \hat{0} ; 1)\rangle$.

Ejércicio 15. Dada la tranformación lineal $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ cuya matriz en la base canónica es:

$$
\left(\begin{array}{ccc}
\frac{1}{2} & -\frac{\sqrt{2}}{2} & -\frac{1}{2} \\
-\frac{\sqrt{ } 2}{2} & 0 & -\frac{\sqrt{ } 2}{2} \\
-\frac{1}{2} & -\frac{\sqrt{ } 2}{2} & \frac{1}{2}
\end{array}\right)
$$

decidir si f cs una rotación, una simetría o una composición de una rotación y una simetría. Encontrar la rotación, la simetría o ambas.

Ejercicio 16. Sca $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ la transformación lineal tal que

$$
|f|=\left(\begin{array}{ccc}
\frac{4}{9} & \frac{8}{9} & -\frac{1}{9} \\
-\frac{4}{9} & \frac{1}{9} & -\frac{8}{9} \\
-\frac{7}{9} & \frac{4}{9} & \frac{4}{9}
\end{array}\right)
$$

i) Probar que f es una rotación.
ii) Hallar $g: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ tal que $g \circ g=f$.

